

Experimental investigation on an OWC wave energy converter integrated into a floating offshore wind turbine

Dr Yu Zhou

Department of Engineering Science, University of Oxford State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology Email: yuzhou2015@foxmail.com 05/09/2022

Background Experiment setup Medal wellightigene

- **3** Model validations
- **4** Results and Discussions

5 Conclusions

1.1 Background

1.2 Development on wave energy devices

Oscillating Water Column

Pendulum

1.3 Multi-purpose platform

Offshore wind turbine

Wind+Wave Cost reduction;

stability increase;

Sarmiento(2019)

1.4 Present work

DEPARTMENT OF Engineering Science

Buoy Volume

Construction Cost

FOWT-OWC

Experiment setup

2.1 Experiment setup

Wave tank with (69m, 4m, 2.5m) Dalian University of Technology

One wave gauges were situated inside the OWC chamber Two pressure sensers were installed on the chamber ceiling

2.2 Experimental models

FOWT-OWC

Opening ratios: ε=1%, 2%, 3%, 5%, 9%

Stationary model

Floating model

Heave motion;

Regular incident waves

Incident wave energy: $P_{inc} = 0.5 \rho g A_i^2 c_g$ C_g : Group velocity

Model validations

All the measured dates for repeated tests agree very well

3.2 Comparisons the numerical results

Heave motion amplitude

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

Meshes for BEM model

Results and Discussions

4.1 Effects of the opening ratios

The optimal opening ratio is 3.0% which produces a maximum efficiency.

The free surface elevation and air pressure have an opposite variation as the opening ratios.

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

4.2 Effects of the chamber draft and breadth

The resonance frequencies shifts to the low-frequency domain as chamber draft and breadth become larger.

A shorter chamber draft can enhance the wave energy capability for high frequency waves.

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

4.3 Hydrodynamics of heave-motion model

Heave natural period increases as the increase of the opening ratio ε . The introduction of the OWC can not only capture wave energy, but also decreases the heave-motion of the foundation. The maximum reduction rate is $\kappa = 54\%$

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

Conclusions

1. The optimal opening ratio is 3%, which produces a maximum efficiency near the resonant frequency.

2. The chamber draft and breadth can be designed and optimized for the maximum efficiency.

3. The introduction of the OWC can not only capture wave energy, but also decreases the heave-motion of the foundation.

