# IMPACT OF SPECTRAL CUTOFF ON ROGUE WAVES

### TIANNING TANG, DYLAN BARRATT, HARRY BINGHAM, TON VAN DEN BREMER, TOM ADCOCK



DEPARTMENT OF ENGINEERING

SCIENCE

UNIVERSITY OF



#### Where do we see spectral cutoffs?

• Not very often in nature

• In the lab

• We want to recreate nature in the lab







## Latheef and Swan experiments

- Experiments run in the Imperial College wave basin
- We focus on a case with
  - kd=2
  - kH<sub>s</sub>/2=0.13
  - 15 degree spreading







# How have we investigated this

- We have run random wave simulations using OceanWave3D
- Waves are generated using a double relaxation zone
- Waves absorbed with pressure damping
- We run simulations with and without the high frequency tail

 Some important differences in generation and absorption compared with experiments







#### statistics Fully non-linear simulation with 1.2waves above $3f_p$ suppressed 1.15at paddle 1.1 $\eta/H_s$ 1.05Fully non-linear simulation with full spectral tail 0.95at "paddle" 0.90.51 1.5 $\mathbf{2}$ 2.54 6 8 10 120 $x/\lambda_0$

• 1% redistribution of energy can make a huge difference



### Kinematics

- Crest statistics are important but we also really want to know about kinematics as these are more directly related to loads
- Nobody has really found a good way of analysing kinematics
- We take an approach of using the inertia part of Morison's equation using the kinematics produced by the code
- We analyse the moment which is exceeded 1% of the time





#### Onorato et al case



- We have also considered the 2006 experiment carried out in MARINTEK
- More non-linear than the Latheef and Swan case (kd=4.9, kH<sub>s</sub>/2=0.16 and about 12° spreading)
- No information about spectral cutoff in the experiments
- Also simulated by other authors using both fully non-linear and MNLS models
- We consider two cutoffs at 2.4k<sub>0</sub> and 6k<sub>0</sub>

#### **Kurtosis evolution**





# Why?



- Very tiny changes in the initial setup produce quite significant changes
- Cutting off the high frequency tail seems to move things out of equilibrium
- Rebuilding the tail is a non-linear process. This process seems to lead to correlations between spectral components leading to more large waves

#### Conclusions



- The high frequency tail matters to non-linear wave dynamics
  - It probably also matters for wave breaking and energy input from waves
- This problem is very hard to suppress in the laboratory
- It (probably) does not exist for unidirectional waves where the non-linear physics is different and the equilibrium spectrum is different