

What makes a wave break?

How machine learning can shed light on the underlying physics of breaking waves

Tianning Tang (Tim); Schmidt AI in Science Fellow @ University of Oxford Lecturer @ University of Manchester

30/06/2025

However, modelling these breaking waves requires DNS solving the **Navier-Stokes equation** and are very **computational heavy**.

2D breaking wave with Navier Stokes Equations – **3 days on Cluster**

3D breaking wave with Navier Stokes Equations – **3 weeks on Cluster**

Why solving Navier Stokes Equations so <u>slow</u>?

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

Datasets

Datasets

Over 75 2D breaking wave cases with over 1 million data points

A single case

Symbolic Regression

https://github.com/ MilesCranmer/PySR

Preliminary Results

* Only for 2d deep water spilling breakers so far

We aim to develop a new model discovered by ML (in-progress) that:

- Overlooks bubbles and white cap details
- Equation based numerical simulation (white box)
- Very Fast (2 minutes on desktop vs 3250 of core hours on supercomputer)
- Mathematically interpretable
- Directly applicable to various scales of the wave

Physical insights

Maximum η and u

Evolution of the maximum position η and u

Experiments

Preliminary Results

Preliminary Results

Thank you!

Tianning Tang (Tim); Email: tianning.tang@eng.ox.ac.uk

Can we now do better with lagre amount of data?

Machine Learning

RMDL: Random Multimodel Deep Learning for Classification

Machine Learning

RMDL: Random Multimodel Deep Learning for Classification

 η and u are *coupled* in FNBC framework

*Subscripts denote partial differentiation 24

Domain Knowledge

As expected, for non-breaking evolution, we have less than 1% of difference between the LHS and RHS of the equation.

FNBC equation **works well** for non-breaking evolution.

PySR new equation

27

What makes a wave break?

How machine learning can shed light on the underlying physics of breaking waves

Tianning Tang (Tim); Schmidt Al in Science Fellow

28/11/2023

Supervisors and Collaborators

Prof. Thomas Adcock

Prof. Paul Taylor

Prof. Yuntian Chen

Prof. Steve Roberts

Dr. Ben Lambert

Dr. Martin Robinson

Discovering Physics from Data

Johannes Kepler (1571 - 1630)

Planet	Mean distance to sun (AU)	Period (days)	$\frac{R^3}{T^2}$ (10 ⁻⁶ AU ³ /day ²)
Mercury	0.389	87.77	7.64
Venus	0.724	224.70	7.52
Earth	1	365.25	7.50
Mars	1.524	686.95	7.50
Jupiter	5. <mark>2</mark> 0	4332.62	7.49
Saturn	9. <mark>51</mark> 0	10759.2	7. <mark>4</mark> 3

Data used by Kepler (1618)

<image>

Planetary system

$$mr\omega^2 = Grac{mM}{r^2}$$

Newton's law of gravitation (published 1687)

Constant

Can we do better in obtaining physical insights from data after 400 years?

<u>Scientific</u> Machine Learning

SciML seeks to address domain-specific data challenges and extract insights from scientific datasets through innovative methodological solutions.

- Brown University

Scientific Machine Learning

Molecular Graphs

New **architecture** based on graph neural networks

Objective: Predicting chemical properties

Truong Son Hy (2018)34

Scientific Machine Learning

Thomas Monahan (2023, under review) 35

Scientific Machine Learning

Scientific Machine Learning

Assumption:

The Domain Knowledge is (close to) sufficient for the underlying system to guide the Empirical Model.

What if the domain knowledge is insufficient?

"Knowledge Discovery"

Knowledge discovery is the process of directly mining important internal principles

(i.e., governing equations) from observations and experimental data through machine learning.

"Knowledge Discovery"

Symbolic Regression

Trying to find *analytical expressions* of the dataset. Prior works include Langley et al., 1980s; Koza et al., 1990s; Lipson et al., 2000s etc.

Symbolic Regression

https://github.com/ MilesCranmer/PySR

Wave Breaking

Wave Breaking

Wave breaking occurs where the wave amplitude reaches the critical point that the crest self- disassembled

Wave Breaking on beach

- **Renewable Energy**
- Offshore wind
- Wave energy converter
- Offshore floating solar etc.

Carbon cycle

•

Atmospheric CO,

Dissolved CO.

Sequestration of carbon in the deep cold water

Wave breaking

Water movement enhancing gas exchanges

However, modelling these breaking waves requires DNS solving the **Navier-Stokes equation** and are very **computational heavy**.

2D breaking wave with Navier Stokes Equations – **3 days on Cluster**

3D breaking wave with Navier Stokes Equations – **3 weeks on Cluster**

Why solving Navier Stokes Equations so <u>slow</u>?

DEPARTMENT OF

SCIENCE

UNIVERSITY OF

Describe a Wave with Boundary Conditions

Datasets

Datasets

Over 75 2D breaking wave cases with over 1 million data points

A single case

Non-breaking evolution

Spatial derivatives of surface elevation and velocities

 η and u are *coupled* in FNBC framework

*Subscripts denote partial differentiation

 η and u are *coupled* in FNBC framework

*Subscripts denote partial differentiation 54

Breaking evolution

Residual: Difference between two sides of the equation

Breaking evolution

Residual: Difference between two sides of the equation

For breaking evolution, we observe **some deviation** from the FNBC framework at the breaking region.

Results

Non-breaking evolution

Results

Based on the MSE error calculation, the new SciML discovered formulation can reduce over 91% of the residual!

Results – Test dataset

Why the SciML Discovered Equation Works?

Physical insights

Maximum η and u

Evolution of the maximum position η and u

Simulation – in progress

Simulation – in progress

71

Preliminary Results

* Only for 2d deep water spilling breakers so far

We aim to develop a new model discovered by ML (in-progress) that:

- Overlooks bubbles and white cap details
- Equation based **numerical simulation** (*white box*)
- Very Fast (2 minutes on desktop vs 3250 of core hours on supercomputer)
- Mathematically interpretable
- Directly applicable to various scales of the wave

72

Thank you!

Tianning Tang (Tim); Email: tianning.tang@eng.ox.ac.uk

Can we now do better with lagre amount of data?

Machine Learning

RMDL: Random Multimodel Deep Learning for Classification

Machine Learning

RMDL: Random Multimodel Deep Learning for Classification

 η and u are *coupled* in FNBC framework

*Subscripts denote partial differentiation 78

Domain Knowledge

As expected, for non-breaking evolution, we have less than 1% of difference between the LHS and RHS of the equation.

FNBC equation **works well** for non-breaking evolution.

Machine Learning Approach

PySR new equation

