Dynamics of oil slicks on wavy water surfaces

A. Lukyanov, T. Pryer, H. Hozan & M. Baines

NOC, Liverpool 2025

Abstract

It is well known that the dynamics of oil spills is a complex phenomenon, it is also well known that water wave activity, including surface waves, make strong impact on oil spills. For example, breaking waves lead to emulsification. In the report, I would like to discuss slightly different aspects of the wave motion effects. In particular, the idea is to rigorously analyse the **'macroscopic'** effects of wave motion on oil layers – **long waves**. Apparently, such effects should serve as preconditioners for the emulsification.

Breaking waves – microphysics beyond the scope Long waves – macrophysics current study

Summary

- Starting point, **the thin film model** a non-linear advection-diffusion equation
- Geometry of the problem isolated oil spots, oil domains in semi-confined settings. One-dimensional cases run to identify the effects.
- Oil spot dynamics no wave present, self-similar behaviour, academic & benchmark
- Oil spot dynamics impact of surface waves, travelling waves, standing wave, currents can be included, but we have focused on the wave phenomena up to now

Problem formulation

Vertical length scale H $x_3 = B(x_1, x_2, t) + h(x_1, x_2, t)$ Gas H $x_3 = B(x_1, x_2, t) + h(x_1, x_2, t)$ Gas $x_3 = B(x_1, x_2, t)$ Thin film flow setting x_1 x_2 x_2 x_2 x_3 x_4 x_5			
Non-dimensional number	Role	Range	
Bond number $Bo = \frac{\rho g_0 L^2}{\gamma}$	Neglect surface tension γ effects	10 ⁹	
Froude number $Fr = \sqrt{\frac{U^2}{g_0 H}}$	Contributes to spreading	> 10	of the full problem based upon 1 mm < H < 10 mm L=100 m and U=1 m/s
Stokes number $St = \frac{\rho U H^2}{\mu L}$	Neglect reverse action of the oil layer	< 0.2	
Thin film ratio $\varepsilon = \frac{H}{L}$	Thin film approximation	$< 10^{-4}$	
Peclet number Pe	Advection & Diffusion	$1 < Pe < 10^{3}$	
Reynolds number $Re = \frac{\rho UH}{\mu} \varepsilon$	Neglect inertial effects	< 0.2	

Problem formulation – 1D

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad q = -\frac{\alpha_g}{3}h^3 \frac{\partial(h+B)}{\partial x} + Vh$$
$$\alpha_g = \frac{\rho g_0 \varepsilon H^2}{\mu U} = \frac{Re}{Fr^2} = \frac{gravity}{viscous}$$

B(x, t) and V(x, t) water-wave elevation and horizontal velocity in the deep-sea approximation **normalised** by H and U, in principle, currents can be added by means of $V_C(x, t)$, but we focus on $V_C = 0$

$$B = B_0 \sin(kx - \omega t), V = V_C + B_0 \varepsilon \omega \sin(kx - \omega t)$$
$$\omega^2 = \frac{k}{\varepsilon F r^2}, \qquad Pe = \frac{B_0 \varepsilon \omega}{\alpha_g}$$

Problem formulation, thin film geometry – 1D. (a) – isolated spot, (b) semi-confined geometry

Advection-diffusion regime $\alpha_g = 2 \cdot 10^{-2} - 1D$ $H = 10 \text{ mm}, Pe \approx 1 \text{ travelling waves - } B_0 \approx 20 \text{ cm}$

Oil spot profiles h(x)

Front motion non-linear

Time, t/t_o

Advection dominant regime $\alpha_g = 2 \cdot 10^{-5}$ – 1D

Standing waves - $B_0 = 20 \ cm$, $Pe \gg 1$

Oil spot profile h(x) with depletions

Distance, X/L

Advection-diffusion regime $\alpha_g = 2 \cdot 10^{-2}$ – 1D.

Semi-confined geometry, but no currents.

Oncoming travelling wave - $B_0 \approx 7 \ cm$.

Front position $x_r(t)$

The suppression of the front motion leading to water-wave induced confinement can be clearly seen

Oil spot profiles h(x)

Further work ongoing – 2D and realistic wave spectra, for example Pierson–Moskowitz (PM) spectra, plus realistic currents

The team A. Lukyanov, T. Pryer

& N. Alsiyali, M. Baines, A. Belozerov, H. Hozan, P. Sweby

Thank you