DEPARTMENT OF ENGINEERING SCIENCE

#### ON NON-LINEAR CHANGES TO THE SHAPE OF EXTREME WAVE-GROUPS IN DEEP WATER



#### **Thomas Adcock**



#### (with thanks to Paul Taylor and Scott Draper)





## Work of Gibbs and Taylor (2005) Fully non-linear potential flow model





# Do the Gibbs & Taylor results hold for large waves in random wave fields?



## Methodology

- Do the following lots of times
  - Simulate waves in linear random wave field
  - Take the largest wave in 1 hour simulation and extract a 2km patch of ocean around it
  - Run the wave-field back in time under "linear" evolution for 10 periods
  - Multiply the wave-field to get the desired Hs
  - Run the wave-field forward non-linearly (using broadbanded modified

NLS) and record the maximum amplitude

$$\begin{aligned} \frac{\partial A}{\partial t} &+ \frac{\omega}{2k} \frac{\partial A}{\partial x} + i \frac{\omega}{8k^2} \frac{\partial^2 A}{\partial x^2} - i \frac{\omega}{4k^2} \frac{\partial^2 A}{\partial y^2} - \frac{\omega}{16k^3} \frac{\partial^3 A}{\partial x^3} + \frac{3\omega}{8k^3} \frac{\partial^3 A}{\partial y^2 \partial x} - i \frac{5\omega}{128k^4} \frac{\partial^4 A}{\partial x^4} \\ &- i \frac{3\omega}{32k^4} \frac{\partial^4 A}{\partial y^4} + i \frac{15\omega}{32k^4} \frac{\partial^4 A}{\partial y^2 \partial x^2} + \frac{7\omega}{256k^5} \frac{\partial^5 A}{\partial x^5} - \frac{35\omega}{64k^5} \frac{\partial^5 A}{\partial y^2 \partial x^3} + \frac{21\omega}{64k^5} \frac{\partial^5 A}{\partial y^4 \partial x} \\ &= -\frac{i\omega k^2}{2} A|A|^2 - \frac{3}{2} \omega k A^2 \frac{\partial A}{\partial x} - \frac{1}{4} \omega k A^2 \frac{\partial A^*}{\partial x} - ikA \frac{\partial \phi}{\partial x}\Big|_{z=0}, \end{aligned}$$



#### Example (Hs = 10 m) Wave envelopes — waves moving left to right





#### Do we see extra elevation?



Non-linear amplitude/Linear amplitude



### Do we see extra elevation (base case)?

| $H_s$ (m) | 1st percentile | Mean | 99th percentile |
|-----------|----------------|------|-----------------|
| 6         | 0.90           | 0.97 | 1.10            |
| 8         | 0.86           | 0.97 | 1.11            |
| 10        | 0.84           | 0.99 | 1.19            |
| 12        | 0.84           | 1.00 | 1.19            |

In some cases but not on average...



#### Do we see extra elevation (other bandwidths)?





## Changes in group shape





## Changes in group shape (base case)

Expansion in lateral direction



Contraction in the mean wave direction



## Average change in shape (base case)





# Can we predict which groups are going to change more than others?

$$\sigma_{x,p}^{2} = \frac{1}{4} \left( 2 + \left(\frac{2a_{lin}k^{2}}{sx_{g,lin}}\right)^{2} - 4\left(\frac{sy_{g,lin}}{sx_{g,lin}}\right)^{2} + \sqrt{2 + \left(\frac{2a_{lin}k^{2}}{sx_{g,lin}}\right)^{2} - 4\left(\frac{sy_{g,lin}}{sx_{g,lin}}\right)^{2} + 32\left(\frac{sy_{g,lin}}{sx_{g,lin}}\right)^{2}} \right). \tag{14}$$

Numerical simulations

Approximate analytical result





Analytical prediction

#### Different spectra — Mean wave direction contraction





#### Different spectra — Lateral expansion





Broader mean-direction bandwidth



## Waves preceding largest waves





#### Size of wave preceding largest wave (base case)



# Ratio of wave crest preceding crest to crest (linear)

![](_page_16_Picture_3.jpeg)

### Waves preceding largest wave

#### Non-linear/linear ratio

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

## Conclusions

- The changes we have observed for isolated wave-groups hold (on average) for large waves in random fields
  - No (or small) increase in amplitude
  - Expansion in lateral direction
  - Contraction in mean wave direction
  - Movement of large wave to front of group

![](_page_18_Picture_6.jpeg)

## Dependence on underlying bandwidth

- Extra amplitude only occurs for a few cases for longcrested seas
- The lateral expansion occurs even for relatively mild steepness
- Mean-wave contraction and movement of wave to front of group strongly dependent on spectrum
- Slightly surprising that (most) cases see larger non-linear changes with broader frequency spectrum

![](_page_19_Picture_5.jpeg)