Challenger Society Ocean Wind Waves SIG Liverpool, 30th June 2025

IMPERIAL

Predictions of extreme waves in the coastal zone

Ioannis Karmpadakis Civil & Environmental Engineering Imperial College London

Motivation

Reliability of structures/vessels in intermediate and shallow water depths.

Theory Why statistics?

Nature of waves: random, multiple frequencies, amplitudes, directions.

Random waves

Outline Predictions of extreme waves in the coastal zone

- 1. Context
- 2. Experimental results
- 3. Numerical modelling
- 4. Real-time prediction using CNN
- 5. Conclusions

Acknowledgements:

Test cases Rationale of parametric investigation

Wave generation: Karmpadakis & Swan (2020). Each sea-state has >=20,000 waves.

List of experimental cases

Karmpadakis and Swan, JPO (2020)

Experimental Setup

Coastal Flume

- ➤ L=22m, W=0.6m, d=0.4-0.8m
- Active & passive absorption
- Piston-type wave paddle
- Froude scaling ($L_s = 1:100$)
- Optimised active and passive absorption

Experimental Setup

Bellos & Karmpadakis, DMPCO (2023) Bellos, Karmpadakis & Swan, ICCE Proceedings (2024) Bellos, Karmpadakis & Swan, JFM(2025-under review)

Wave evolution Challenges in modelling

Evolution of integral statistics with 90% CIs

Wave statistics Effect of Bathymetry

- $k_p d$ reduces: • η_c/Hs increases
- Wave breaking:
 η_c/Hs reduces in the tail of the distributions
- Tail changes:
 - Changes progressively earlier as S_p increases
- The distributions eventually converge and then once again start to increase

Wave statistics Effect of Bathymetry

- Spatial evolution for Q=10⁻³
- η_c/η_{c0} and H_s/Hs_0 separately
- Increase:
 - Nonlinear amplifications
 & wave shoaling
- Decrease:
 - Breaking dissipation

The evolution ratio has important implications for the definition of design waves.

Imperial College London

10

Numerical results

Can SWASH recover these statistics?

- Numerical reproduction of experimental results using SWASH (Zijlema, 2011).
- Reduced equations relevant to 2D problem.
- Phase –resolving, non-hydrostatic.

$$\frac{\partial \eta}{\partial t} + \frac{\partial hu}{\partial x} = 0$$
(1)
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial \eta}{\partial x} + \frac{1}{2} \frac{\partial q}{\partial x} + \frac{1}{2h} \frac{\partial (\eta - d)}{\partial x} + c_f \frac{u|u|}{h} = \frac{1}{h} \frac{\partial}{\partial x} \left(hv_T \frac{\partial u}{\partial x} \right)$$
(2)
$$\frac{\partial w_s}{\partial t} = \frac{2q}{h} - \frac{\partial w_b}{\partial t}$$
(3)
$$w_b = -u \frac{\partial d}{\partial x}$$
(4)
$$\frac{\partial u}{\partial x} + \frac{w_s - w_b}{h} = 0$$
(5)

Numerical results Comparison to experiments

Slope 1/50

Al Khalili, Karmpadakis, Christou & Bellos, Coastal Eng (2025)

12

Numerical results

Comparison to experiments

$$k_p d = 0.69$$

Al Khalili, Karmpadakis, Christou & Bellos, Coastal Eng (2025)

Wave evolution Challenges in modelling

 $k_p d$ reduces \rightarrow nonlinearity increases:

- Crest-trough asymmetry
- Higher and sharper crests
- Shallower and broader troughs
- Transfer of energy to super/sub harmonics
- Wave breaking:
 - Energy dissipation

Interplay:

- Nonlinear wave-wave interactions
- Dispersion
- Wave breaking

Wave evolution Problem statement

- Take a short measurement of $\eta(t)$ offshore
- ▶ Predict $\eta(t)$ onshore
- Examine and compare the accuracy of different methods.
- Incorporate limitations by the prediction zone

Wave evolution Physics-based modelling and NN

Linear Wave Theory (LWT):

$$\eta(x,t) = \operatorname{Re}\left\{\sum_{n} a_{n} e^{-i\omega_{n}t}\right\}$$
$$d_{x}a_{n} = \left(ik_{n} - d_{x}\sqrt{c_{g,n}}\right)a_{n}$$

Second order correction (SOWT):

$$\mathbf{d}_x \mathbf{a}_n = \left(ik_n - \mathbf{d}_x \sqrt{c_{g,n}}\right) \mathbf{a}_n - i \sum_r V_{r,n-r} \mathbf{a}_r \mathbf{a}_{n-r}$$

The interaction kernels V are taken from Akrish et al. 2024 (QuadWave1D).

In this work we use a **convolutional neural network (CNN)**:

- Trainable parameters take the form of filters
- These are fixed arrays which sweep along the input arrays, as shown in the figure
- Multiple filters expand the input dimension into multiple channels

We use a **U-net** architecture. Picture taken from Wedler et al. (2022).

Wave evolution Physics-based modelling and NN

Wave evolution UNET predictions

Wave evolution Effect of depth on predictions

Wave evolution Crest predictions

- > Predict 2,000 η_c for 35 T_p in advance
- Overall, very good predictive capacity
- Some challenges in the largest crests
- Significantly reduced std compared to other methods

Wave evolution Overall performance

- Networks trained on different spectra provide similar accuracy
- Considerations for dispersion

Wave evolution Overall performance

- Generalisation to different spectral shapes
- Errors at least 5 times smaller than other methods

Conclusions

Real-time prediction of waves in the coastal zone.

➤Use of new extensive experimental/numerical dataset

- >NNs learn to a high degree of accuracy the propagation between 2 points
- ➤UNETs generalise well to unseen spectra
- ≻Challenges remain for extreme events

Wave evolution Overall performance

