

1

Wave-by-wave data from GPS-based buoys - spikes and spirals

Paul H. Taylor School of Earth and Oceans The University of Western Australia

With - Kosuke Sando & Hugh Wolgamot at UWA Daryl Metters at Queensland Gov. Hydraulics Lab

BOB's bash with Tropical Cyclone Nathan 2015

- BOB (DWR-G 0.4m)
 - GPS based directional buoy
 - Deployed from a helicopter
- Statistics
 - Peak Hmax: 9.60 m
 - Peak Hm0: 5.34 m
- Passing over Boulder Reef (9:30 18/03)
 - ~ 5 m depth
- Previous publications
 - BOB's bash with TC Nathan (DSITI, 2015)
 - Monitoring and Modelling Extreme Wave Conditions during Tropical Cyclone Nathan (Boswood et al., 2017)

From:

https://datawell.nl/products/directional-waverider-dwr-g4/

Directional Waverider DWR-G4 0.4 m diameter

Sensor	single GPS (not differential)		S AUSTRALI
Periods	heave	1.6 s to 100 s	
	direction	1.6 s to 100 s (free-floating)	
		1.6 s to 20 s (moored)	
Precision	0.01 to 0.02 m, all directions (1σ) (excluding GPS antenna pitch and roll motion)		
Calibration	not required ever		
Exclusion	GPS signals do not penetrate through water, occasional data gaps may occur		
Exclusion	measurements fail at position changes greater than 100 m in less than 100 s, e.g. when used free floating or towed at constant velocities greater than 1 m/s.		g.

Note : spike / loss of signal behaviour is different vertically and horizontally

0m

-10m

-20m

-30m

-40m

-50m

Measured wave data: motion in heave, north + west

Fig. 3. Measured displacement of heave, north, and west direction. The largest wave height was recorded during this 30 min segment beginning from 2015/03/20 2:00AM.

4

03:00

18:30 00:30 06:30 12:30 18:30 00:30

2015-03-18

Previously published material and modelling of spikes

Spikes in GPS buoys reported by Björkqvist (2016) and Boswood (2017)

- Assumed Sawtooth shape based spectral correction by Björkqvist
 - not applicable for wave-by-wave analysismodel has room for improvement

Vertical spikes in heave motion

Spikes have a characteristic shape – not a saw tooth

Improved understanding and model of spikes

Theory: whenever GPS signal is lost, the discontinuity creates a "jump". Hardwired high-pass (100s) filter removes the shift in m-s-I level but leaves behind a residual spike.

Proposed spike model: step function through high pass filter (quasi-step response)

Average shape of 119 detected spikes (Black) and model spike (Orange) ->

De-spiking methodology

With the shape of a model spike identified

use a wavelet transform method in MATLAB using Symlet 4 wavelets (chosen to match spike form)

- 1. Use convolution with model spike to estimate spike location
 - Large value in convolution -> possible spike
- 2. Estimate spike parameters (size, precise location, loss duration)
 - Use wavelet transform of signal to feed into the cost function
- 3. Remove spike by best-possible subtraction from original signal
- 4. Repeat 1-3 until number of expected spikes reached
- 5. High pass filter to remove residual low frequency artefact

De-spiking results – using Symlet 4 wavelets in MATLAB

Raw (Top) and de-spiked (Bottom) heave motion at 2:00 when BOB recorded largest wave

Left - time signals; Right - wavelet transforms

10

De-spiking results

- Bulk statistics for most severe interval
 - Peak Hmax: 9.60 m -> 8.06 m
 - Hm0: 5.34 m -> 5.00 m
- Spectrum
 - Large reduction <0.07 Hz due to de-spiking and high pass filter

-What about wave shapes?

What is NewWave?

- Linear model for the average shape of large waves at sea (Tromans, 1991)(Bocotti, 1983)
 - Based on stats of extremes in a linear random Gaussian process (Lindgren, 1970)
 - Scaled auto-correlation function of the measurement

Average shape of linear waves from top 30% crest and troughs in solid grey line.

Scaled autocorrelation function (NewWave) in dotted black line. @2:00AM 20/03 (largest wave)

NW as viable model in shallow waters (vert)

NewWave works well for linear term even in very shallow water and locally steep waves $(k_p d \sim 0.59)$ $(k_p H_s \sim 0.24)$

Validation of NW linear components - average motion of buoy in a large wave crest

Trajectory of horizontal motion in a vertical NW

- elliptic **spiral** -> linear motion

Vertical NewWave profile (grey), also reconstructed from horizontal NewWave profile (dotted black) using linear wave theory

- a check of buoy motion

Conclusions

- New approach to de-spiking raw data from DWR-G4
 - based on spike identification with wavelets
 - can recover entire time history of vertical motion
- NewWave in shallow water
 - A good model for steep waves in water depth $k_p d > 0.5$

Future work

Gaps in horizontal motion are much harder to treat

- application of ML methods?

Recently published :

Sando K., Taylor P.H., Wolgamot H., Chen L., Metters D.

Wave-by-wave analysis, spike removal, and NewWaves in GPS buoy data near the Great Barrier Reef in tropical cyclone Nathan

Ocean Engineering 336 (2025) 121808