Rogue waves in UK coastal waters

Investigating the nature and dynamical properties of rogue waves

Edward Roome (1st Year PhD student)

Supervisors: Prof. Simon Neill & Dr. Suzanna Ilic & Dr. David Christie

Background

Rogue waves are windgenerated surface waves which are much larger than the background waves.

What is a rogue wave?

A wave whose maximum height exceeds twice the significant wave height $(H_s \text{ or } H_{m0})$:

 $\frac{H_{max}}{H_s} > 2$

Rogue waves are a marine hazard

Extreme heights, steep wave fronts, and groups - no accurate forecast

2005-2021 - (Didenkulova et al., 2022)

Generation mechanisms?

Linear superposition (dispersive focussing) vs. non-linear (modulation instability)*

Linear dispersive focussing is thought to be dominant (Christou & Ewans, 2014; Fedele at al. 2016; Hafner et al. 2021; Teutsch & Weisse, 2023)

Sea state parameters \bigcirc rogue wave occurrence

In 1995, the first reliable measurement of a rogue wave was made – the Draupner wave.

*Environmental factors e.g. Wave-current interaction

Past research

Dataset – Channel Coastal Observatory

Better understand coastal rogue waves (occurrence & generation mechanisms)

Distance offshore (km)

Methodology

Preprocessing

Combine raw data into structured netCDF format

2

Processing

Complete wave-by-wave analysis and compute sea state statistics

3

Postprocessing

Filter waves

4

Analysis

Look for relationships between sea states and rogue waves

In progress...

Preprocessing

- 8.5 million .raw (30-min) displacement files (480 years)
- 9 million .spt spectra files
- 21% are incomplete
- 10% are missing

Processing

- Wave-by-wave analysis (Free Ocean Wave Dataset processing tool - Hafner et al. 2021)
- Running window approach (10 min, 30 min, dynamic)

Postprocessing

Filters:

- 1. Hs less than 1 m
- 2. Mean period less than 5 s (Nyquist frequency)

3. Relative energy of low frequency band exceeds 10% of the total energy

BidefordBay	- 58		2.6 14.3		25.1
BlakeneyOverfalls	- 71.1	71.1		8 2	4 2.1
BrackleshamBay	- 8	80		1.8	14.9 3.3
ChapelPoint	- 80	80.8		0.9	15.9 2.4
Chesil	- 66.9	66.9		21.4	6.9
Cleveleys	- 73.7			3.3	22.8 012
Dawlish	-	88.4			0.7 10.8 0.2
Felixstowe	-	91.5			0.3 8.1 0.1
Folkestone	-	88.2			0.1 11.7 0
GoodwinSands ·	-	84.7		0.7	/ 14.5 0
GwyntYMor ·	- 78.	3		2.3	19.4 0
Happisburgh	-	83.3		2.7	12 1.9
HaylingIsland	85.4			0.	5 12.1 2.1
Hornsea	- 77.8	8		3	14.1 5
LooeBay ·	- 71.8			.2 18.3	6.7
Lowestoft	- 76.9	9		3.7	19 0.5
Milford	- 80	0.6		0.7	15.7 2.9
Minehead	-	90.2			1.8 7.5 04
MorecambeBay ·		83.6		2.6	13.5 012
Newbiggin	- 69.9	69.9		8.7 14	.6 6.8
NorthWell	-	89.5			0 7.4 3.1
Penzance ·	-	32.3		1.7	12.4 3.6
Perranporth ·	- 36.6 5.4	4 18.3		39.7	
PevensevBav	- 78			2.4	19.1 0.6
Porthleven	- 55.3	4.4	15.5		24.8
RhvlFlats		85.5		0	.8 13.7 0
Rustington	- 76.6	5		2.2	18.9 2.2
RveBav	- 75.9			2.2	21.8 0.1
SandownBay		91			0.6 8.4 0.1
Scarborough	- 67		9	15.8	8.1
StMarv'sSound	- 53.8	9	.7 2	0.8	15.6
StartBay	- 8	0		2.1	13.9 3.9
TorBay		93.5			0.8 5.6 0
WaveHub	21.7 9.7	19		49.6	
WestBay	- 71.3			20.1	5.6
WestonBay	-	94.4			0 5.6 0
Weymouth		93.6			0.3 6 0.1
Whitby	- 68.9			9.7 11.9	9.5

🔲 Waves removed (low swh) 📃 Waves removed (drifting) 🔤 Wave removed (undersampled) 🔲 Waves passed

1 in 15,000 (Hafner et al. 2021)

Temporal analysis

Analysis

Rogue Wave Probability 1e-4

- Probabilities vary by 2x
- Crest-to-trough correlation remains a strong predictor

Further analysis & write-up in progress... (full & filtered processed dataset will be published)

Challenges (1)

High frequency radar transmission (from wave buoy to receiver) can result in missing data. **Solution:** These files with missing data are replaced with NaN values.

Challenges (2)

A common issue with raw data from the Datawell Waverider buoys is the **filter artefact Solution:** We attempt to remove these data points in QC ... However, some remain in the processed data.

Progress timeline

An investigation of rogue waves in UK coastal waters (James & Panchang, 2025)

- Data spanned from 2014.01 2020.12
- Sea state parameters are calculated from the preceding 30-minute sample. Then the probability of a rogue wave occurring in the next sample is used.
- No wave-by-wave analysis
- Found 1 in 8,000 waves were rogue
- Found that relative depth is a strong predictor we did not find this to be true in our analysis.

Perranporth tidal test – ran a harmonic prediction from 30 model timeseries

