

Predicting extremes in the ocean

a data-driven approach

University of Oxford Tianning Tang (Tim) Supervised by Thomas Adcock

Rogue waves

- Offshore wind
- Offshore floating solar
- Wave energy
- Transportation
- Autonomous marine vehicle
 - • •

What do we want to know about the rogue wave?

- Wave crest **amplitude** statistics
- Most probable shape of extreme waves
- **Physics** behind extreme waves

The challenge

- Complexity in the nonlinear physics (Benjamin-Feir instability, wave breaking, wave-current interactions, wind-wave interactions...)
- Balance between in the numerical model accuracy and computation resources available

• It is computationally impractical to obtain sufficient **statistically stable** training data with high fidelity numerical model

Random time series vs. Wave groups

A framework describing extremes

Gaussian wave groups

$$u_0(x,y) = A \exp\left[-\frac{x^2}{L_x^2} - \frac{y^2}{L_y^2}\right],$$

A: Envelope amplitude at linear focus

 L_x : Length scale in x direction

 L_y : Length scale in y direction

Parameterization of random wave fields

Step 1: Determine the envelope peak

Step 2: Determine the length scale parameters with optimization algorithm

$$u_0(x,y) = A \exp\left[-\frac{x^2}{L_x^2} - \frac{y^2}{L_y^2}\right]$$

Recreate the formation of extreme events

Can we predict the most probable **shapes** of rogue waves?

Averaged shape of extreme events

 The proposed parameterization and recreation method can accurately isolate the extreme events and predict the nonlinear changes.

Can we predict the **Statistics** of rogue waves?

Probability of extreme events

Probability of extreme events

15

Can we establish a wave group database without simulating thousands of wave groups?

Database assimilated Gaussian Process

Extreme Response \equiv GP(L_x, L_y, A)

 A gaussian process regression is used to interpolate the extreme responses.

 For new combination of inputs, the high-fidelity numerical model results can be reused.

Sequential sampling method

Step 1: Predict the response based on current observations with GPR

Step 2: Determine the next best sampling point based on the information gain

Step 3: Sample the system response at the best sampling point and repeat the process

Sequential sampling method

Random search sampling method

Sequential sampling method

19

Probability of extreme events

The proposed probabilistic decomposition method can provide accurate estimation for space-time wave statistics for test cases without random time series simulations.
Tang & Adcock

Tang & Adcock (2022) Applied Ocean Research

Conclusions

- A data-driven method is presented for parameterizing the random wave fields with deterministic wave groups.
- The nonlinear simulation of individual wave groups can capture the nonlinear changes of in the averaged shape of largest events.
- The probabilistic decomposition method can provide accurate estimation for space-time wave statistics for test cases without random time series simulations.
- The proposed sequential sampling method can significantly reduce the number of wave group simulation used in the model.

Current & Future work

- Apply the proposed framework to extreme force predictions.
- Include more non-linear physics (e.g., wave-current interactions, wind-wave interactions...).

