

Structure of vents using high resolution studies

Dirk de Beer, Anna Lichtschlag, Anita Flohr, Kate Peel, Dirk Koopmans, Moritz Holtappel

MPI-NOCS-AWI

Background profiles

Profiles in vent

T transects

T-gradients local (<1 m from vent)

Not proportional to CO_2 release and variable

No T in bottom water

Heat generation

Loggers from Moritz Holtappel, **30 cm depth**

pН

pH decrease local (<1 m from vent)

Variable & not proportional

Local effect in bottom water

Lab experiment

At day 4

Portrait of a vent

TA values in situ

Calcite dissolution (+silicate???)

Top 10 cm ventilated by escaping bubbles (Michael Stöhr: bubble out, water in)

Kate Peel, Anita Flohr

Vent=cylinder in infinite medium

Cylindrical source: effects are local

$$J=k(C_{b}-C_{i})$$

$$k=D/\delta_{h} \text{ k=mass transfer coefficient (m s-1),}$$

$$\delta_{h}=\text{effective boundary layer}$$

$$Sh = 0.3 + \frac{0.62Re^{\frac{1}{2}}Sc^{\frac{1}{3}}}{\left(1 + \left(\frac{Re}{Sc}\right)^{\frac{5}{3}}\right)^{\frac{4}{4}}}\left(1 + \left(\frac{Re}{282000}\right)^{\frac{5}{8}}\right)^{\frac{4}{5}}$$

$$= \frac{kd}{D}$$

In absence of flow Re=0 thus: Sh = 0.3As $Sh = \frac{kd}{D}$ and $k = \frac{D}{\delta_h}$ ($\delta_h = \frac{d}{Sh} = 3d$)

bubble~2 cm, $\delta_h \sim 6$ cm diameter plume ~14 cm

In steady state and in absence of reactions: Effective boundary layer is finite and about 3x the diameter

 δ_h independant from D, both for mass and heat

Churchill SW, Bernstein M. 1977. A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow. Journal of Heat Transfer **99:**300-306.

D? k? mass transfer mechanism? Pulsating channel....

Carbonate equilibrium? Kinetics of calcite dissolution? Kinetics of silicate weathering? In sediment: >Lateral DIC diffusion >Reactions with sediment

Above sediment:

>Plume above measuring horizon >CO₂(I) (CO₂ \rightarrow H₂CO₃ \rightarrow HCO₃⁻+H⁺ slow)

75%?

• Poster Dirk Koopmans:

Heat generation

 $Me^{2+} + H_4SiO_4 + 2HCO_3^{-} + H_2O \qquad \Delta H - 73000 \text{ J mol}^{-1}$

Heat flux: 3 J m⁻² s⁻¹ (from thermal conductivity and T gradient, underestimation!)

Assume cylinder of 3m long, 2 cm bubble channel plus 6 cm δ_h : 0.13 J s⁻¹

This heat is generated by: CO_2 reactions 1+2: 0.00013 mol s⁻¹ CO_2 reactions 1+3: 0.00004 mol s⁻¹

```
2 L CO<sub>2</sub> min: 0.0015 mol s<sup>-1</sup>
```

Stumm W, Morgan JJ. 2012. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3 ed. Wiley.

 δ_h

Conclusions

- Vent channels are narrow and have only local effects
- MBL 3x diameter, if d=2 cm MBL 6 cm total diameter influenced sediment 2+2x6=14 cm
- CO₂ input generates DIC and heat
- Heat and DIC partially dissipated laterally in sediment
- Heat needs inclusion in vent modeling (kinetics and viscosity)

TA values in situ

Very variable, top 10 cm ventilated by escaping bubbles (Michael Stöhr: bubble out, water in)

Kate Peel, Anita Flohr

Stöhr et al, 2004

	mass			heat				
alk	50							
DIC in	10000							
J=	0.000166667	mol/m2s		3	J/m2s			
A=	0.4396			0.4396		L/min		
=	3			3		2	0.001488	mol/s
Area cyl	1.3188			1.3188				
total flow	0.0002198 mol/s			3.9564 J/s				
			Calcite	0.000128039	mol/s			
			Silicate	4.25419E-05	mol/s			

Advection cell in vent

Sh \uparrow thus $\delta_h \downarrow$ -> more local

Haeckel M, Boudreau BP, Wallmann K. 2007. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation. Geochimica Et Cosmochimica Acta **71:**5135-5154

Ecology and geochemistry

Sulfate reduction lower

(=35% total mineralization)

No effect O₂ uptake

pH decrease only local

No animals deterred

