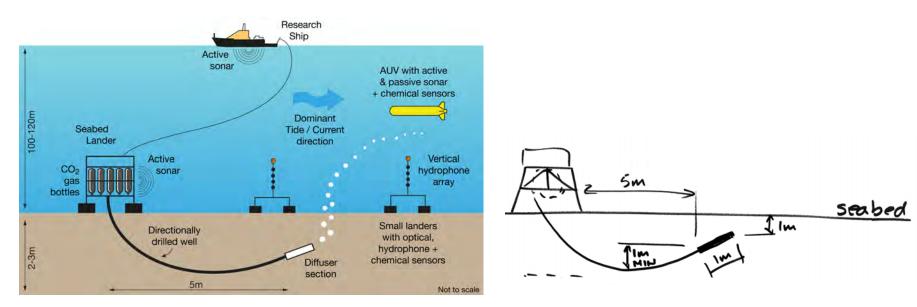


International Workshop on Offshore Geologic CO₂ Storage

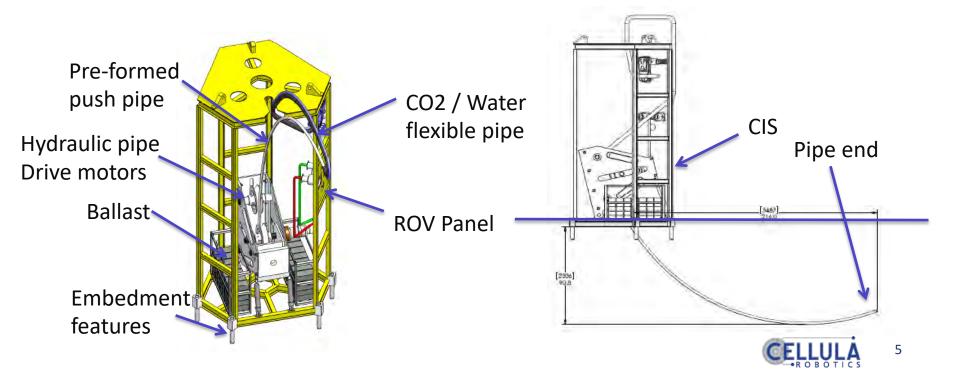
An Overview of the Design, Build and Testing of the CO₂ Rig


Contents:

- Background
- Design Phase Summary
- Build Phase Summary
- Testing Summary
- Offshore Operations Support

Background:

Where did we start....?


Scope:

- Design and fabrication of the subsea rig
- Design and build of top-side control system
- Design and fabrication of the CO2 injection pipe
- Factory Acceptance Testing of the fully integrated system
- Dock (submerged) Testing including injection pipe installation in seabed
- Provide Operational Spares
- Provide Operator Training
- Provide Offshore operations support

Initial concepts – subsea module (2015):

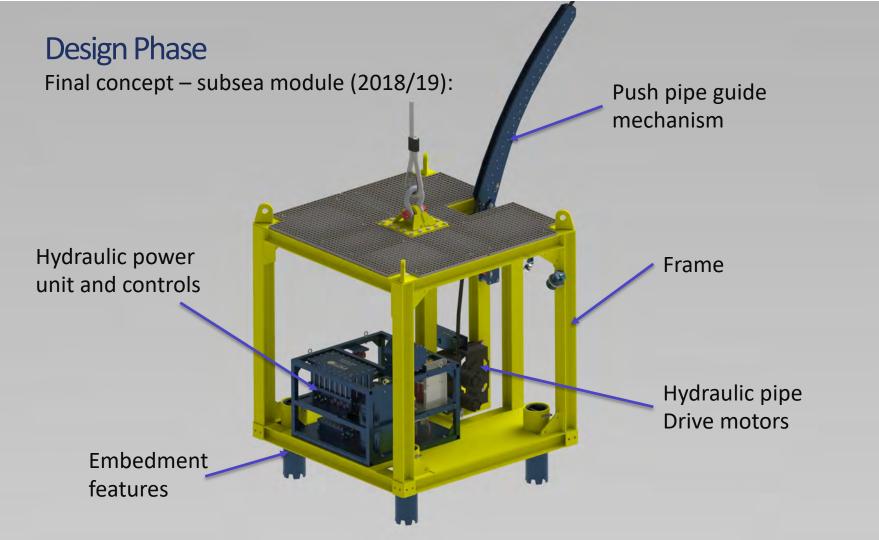
- ROV intervention to operate rig
- Rig remains on seafloor during CO₂ injection

Initial concept – subsea module (2018):

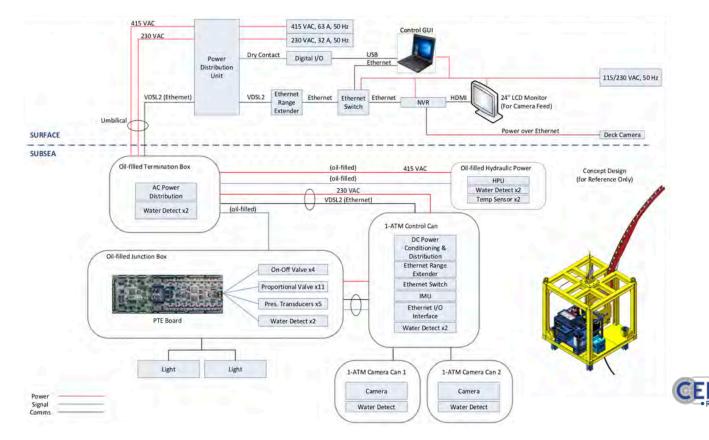
Hydraulic power unit

Hydraulic pipe Drive motors

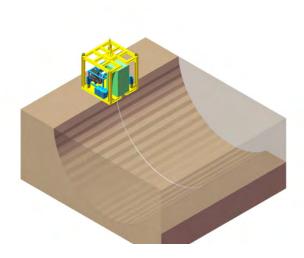
Embedment features


Pre-formed push pipe

Frame

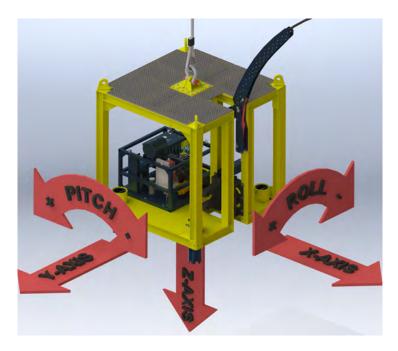

- No ROV operations Panel
- Now integrated subsea power and comms
- CO2 injection to be from separately deployed source
- Rig to be recovered between pipe installations/during CO₂ injection

Ballast



Overall System Block Diagram:

Challenges:


- CO₂ pipe injection method:
 - Curved pipe geometry
 - Precise positioning in seabed
 - Connection of external CO₂ supply
 - Capability to insert and retract pipe
 - Verification of pipe diffuser position following pipe insertion
- 'Stuck Pipe' Scenarios:
 - Rig breakdown/power failure with pipe partially inserted
 - Pipe refuses during insertion
 - Pipe bends/jams during pipe insertion due to ground conditions

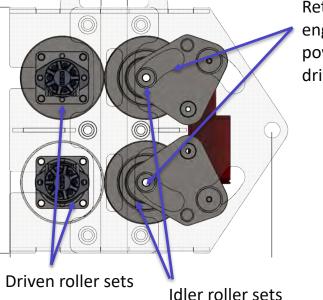
Challenges:

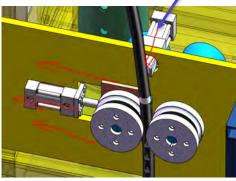
• CO₂ pipe injection method:

- Realtime pitch and roll monitoring during rig land out and operations (accelerometer)
- AHRS for heading reference during land out
- COTS linear engine utilized for pipe injection – bi-directional and marinized

Challenges:

• 'Stuck Pipe' Scenarios/Pipe Detection:


+ 2.500 ---


Powerful neodymium magnet installed in pipe tip for detection by ROV magnetometer

VIIIA VIIIA VIIIA VI

Amespore sintered CO₂ diffuser

Retractable rollers on linear engine release pipe on power failure (accumulator driven) Hydraulic push units eject pipe from linear engine on power failure (accumulator driven)

CONOPS Animation:

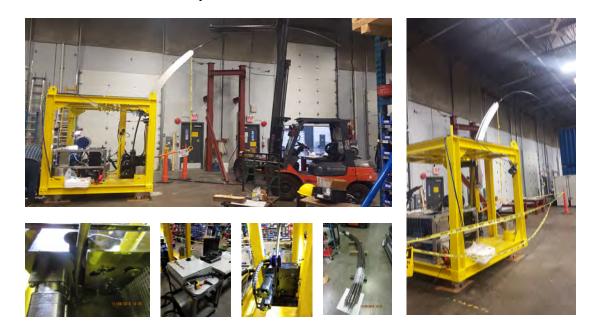
Build Phase

Schedule:

		Planned	Actual
•	Contract Execution	16 May 2018	16 May 2018
•	Kick-off meeting	07 June 2018	05 June 2018
•	MS0: Preliminary Design Review (internal)	09 July 2018	24 July 2018
•	MS1: Critical Design Review (Client)	09 Aug 2018	09 Aug 2018
•	MS2: Completion of Build and FAT	14 Feb 2019	24 Jan 2019
٠	MS3: Completion of Dockside Testing	21 Feb 2019	26 Feb 2019*
٠	MS4: Completion of Client Training	21 Feb 2019	26 Jan 2019
•	MS5: Completion of Packing for EXW Delivery	22 Feb 2019	04 Mar 2018
•	MS6: Offshore Operations Support	April 2019	24 Apr – 2 May 2019

Build Phase

Main Assemblies/Systems:



Factory Acceptance Testing Location: Cellula Robotics Ltd, Burnaby, BC Date: 24 January 2019.

- Fully function tested (dry)
- Pipe loaded and unloaded
- Pipe emergency release tested

Testing Phase

Dock Test No. 1:

Location: Allied Shipbuilders Ltd., North Vancouver, BC

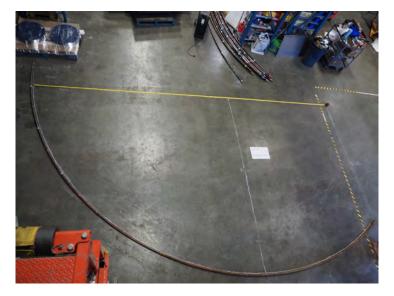
Date: 26 January 2019.

- 2 Pipes pushed 100% penetration
- Pipe emergency release tested
- No water ingress
- No IR faults
- No comms faults

Dock Test No. 1:

Hmmm... but something doesn't look quite right...?

'unpushed' pipe geometry

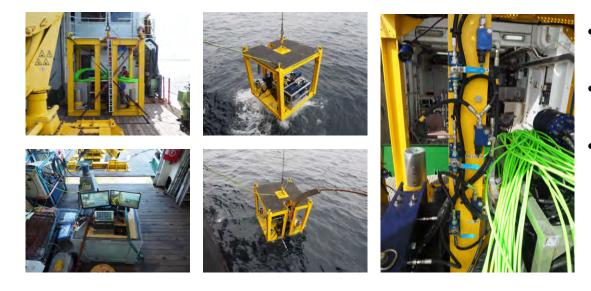


pipe geometry after push test

Retest – post Linear Engine Roller adjustments:

Pre-test pipe geometry set out

Post-test pipe geometry check



Post test pipe geometry within tolerance

Offshore Operations Support

Location: Goldeneye Gas Reservoir (depleted) UKCS. Dates: 24 April – 2 May 2019

- 2 Pipes successfully installed and connected to CO₂ supply
- CO₂ verified as flowing through pipe
- CO₂ bubbles observed and monitored at the seafloor

Thank-you!

Allan Spencer Managing Director (UK)

 Tel
 +44-7961 179 973

 Email
 allan.spencer@cellula.co.uk

OLUS-LR

Address Cellula Robotics (UK) Ltd. Brathens Eco-Business Park Hill of Brathens Banchory Aberdeenshire AB31 4BW

Tel+44 1330 826 889Emailinfo@cellula.comWebwww.cellula.com

Cellula Robotics: AUV Program

12 Feb - 1130-1200

'Sea trial results from an experimental fuel cell powered, long range, autonomous underwater vehicle with anchoring capability'

