

Ollscoil na Gaillimhe University of Galway

Combined statistical, hydrodynamic and machine learning modelling of water levels in coastal basins

Agnieszka I. Olbert¹*, Jennifer IM Kirkpatrick¹, Alexander Shchepetkin¹, Galal Uddin¹, Sogol Moradian¹, Stephen Nash¹, Michael Hartnett¹

¹Civil Engineering, College of Science and Engineering, Ryan Institute, University of Galway

<u>INTRO</u>

- High coastal water levels and high river flows can result in flooding of coastal floodplains.
- Twenty-first century climate change is expected to alter these flood mechanisms.
- Aim: provide a methodology for comprehensive forecasting and assessment of urban flooding in consideration of climate change and to investigate changes in flood mechanisms, dynamics and extents due to climate change.

METHODS

- A coastal city of Cork, Ireland was used as a case study.
- MSN_Flood 4-level nested model was used to compute potential future inundation pattern for current, mediumrange and high-end projections of extreme river flows and sea levels.

RESULTS

This research establishes a best practice methodology for assessment of urban coastal-fluvial flood risk under a changing climate and can be used to determine climate-resilient flood management measures so that flood prevention or alleviation schemes can be evaluated and/or optimized.

MODELLING FRAMEWORK

Statistical, hydrodynamic and machine learning modelling

Cascade of Hydrodynamic Models Dynamic downscaling MPIOM → POM→ MNS_Flood

Study area, with four-level nesting structure of Cork Harbour and Cork City nested models

MODEL OUTPUTS

Hazard polygons for (a) children, and (b) adults under high-end surge conditions on current and future sea levels

Maximum water depths under high-end surge conditions for (a) current, (b) medium-range, and (c) high-end sea levels

Maximum water velocities under high-end surge conditions for (a) current, (b) medium-range, and (c) high-end sea levels

CONCLUSIONS

Climate-driven increases in both coastal and fluvial mechanisms have the potential to cause an extensive inundation across the Cork City domain and create a significant threat to the populace across the majority of the city.