Applying Nature-based COastal DEfence in the Pearl River Delta: the ANCODE project

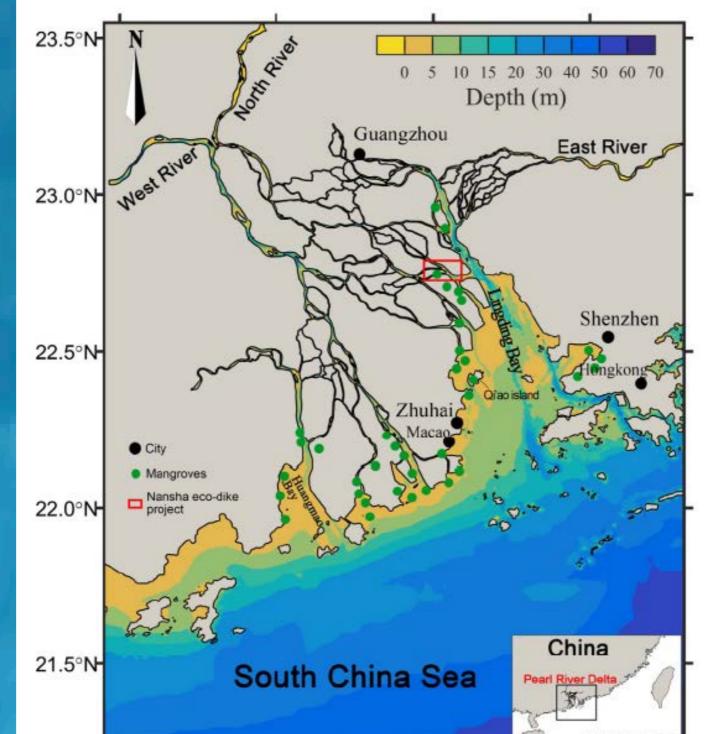
Judith Wolf^{*1}, Tjeerd J. Bouma^{2,4}, Zhan Hu³, Svetlana Jevrejeva¹, Michela De Dominicis¹, Rosanna van Hespen^{2,4}, Maarten Kleinhans⁴, Klaas Timmermans^{2,4}, Tom Ysebaert^{2,4}, Peng Yao³, Chen Wang⁵, Ming Li⁶, Peng Zheng⁶

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Introduction

Coastal cities worldwide are at increasing risk of coastal flooding due to increasing populations and assets as well as sea level rise and subsidence. The estimated average annual losses (AAL) were US\$6 billion in 2005, and this figure is expected to grow by a factor of 10 up to 2050¹, assuming continuing improvement of existing sea defences (if existing defences are not upgraded the estimated annual losses could exceed US\$1trn). Guangzhou, in the Pearl River Delta (PRD) in China, is the city most at risk globally and may be exposed to increased flooding due to more extreme winds, rising water levels and waves associated with typhoons.

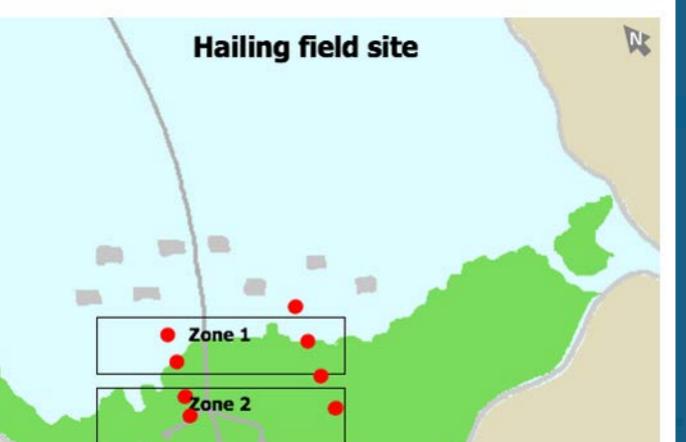
¹National Oceanography Centre (NOC), UK ²Royal Netherlands Institute for Sea Research (NIOZ), Netherlands ³Sun Yat-sen University (SYSU), China ⁴University of Utrecht, Netherlands ⁵Satellite Environment Centre, China ⁶University of Liverpool, UK


Establishment of Mangroves and Oyster Reefs

Key questions (for effectiveness & resilience) :

Nature-based coastal defence solutions are recognised as more sustainable alternatives or additions to conventional hard engineering approaches². In tropical and sub-tropical regions, these may include using mangroves and oyster reefs as a buffer zone, which can attenuate waves and trap sediment.

There are challenges in the implementation of such schemes and many attempts to re-establish mangroves have failed, because the plantation may be exposed to inundation and other stresses such as waves, lack of sediment or inappropriate conditions such as salinity. A useful approach for identifying periods when mangroves may be established involves identifying Windows of Opportunity (WoO) when conditions are favourable³.


The Zhu Jiang (Pearl River) basin including its 3 tributaries (West, North and East rivers)

- 1. How wide should the nature-based coastal defence be?
 - a. vegetation patch scale → wave attenuating capacity affected by repeated storms
 - b. tidal flat scale
 Iong-term stability of the ecosystem (lateral expansion and retreat)
 - c. Delta scale → Optimizing ecosystem sizes on a delta-scale (where should we put natural defenses?)
- 2. How to create the ecosystems where they are needed?
 - a. First measure → integrating nature-based coastal defence with reclamations
 - b. Second measure → use dredged sediment to create Windows of Opportunity (WoO)
 - c. Third measure → build oyster reefs in front of mangroves for WoO

Fieldwork in PRD and Hailing Island

			South China Sea
112.5°E	113.0°E	113.5°E	114.0°E

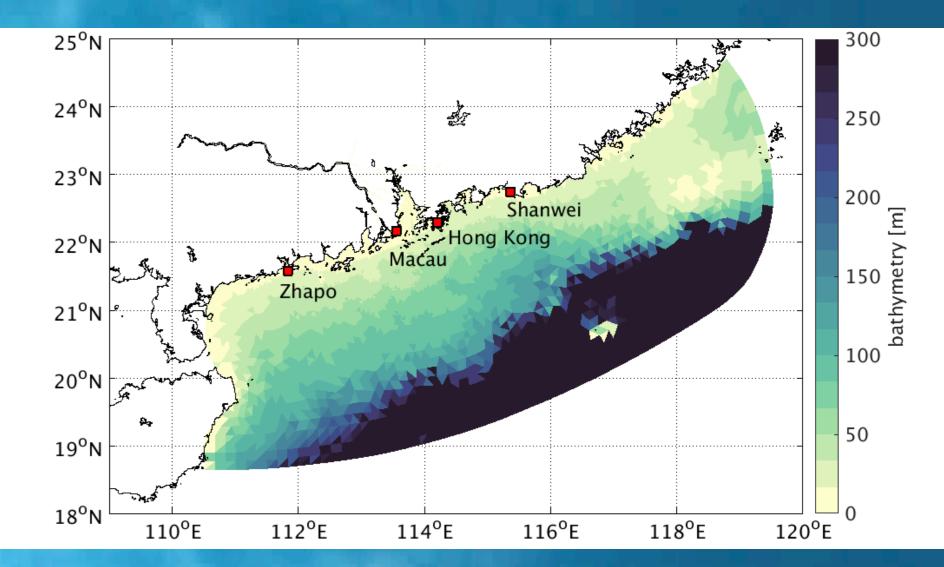
l defence with ppogenic drive

Applying I global cha = wave logger

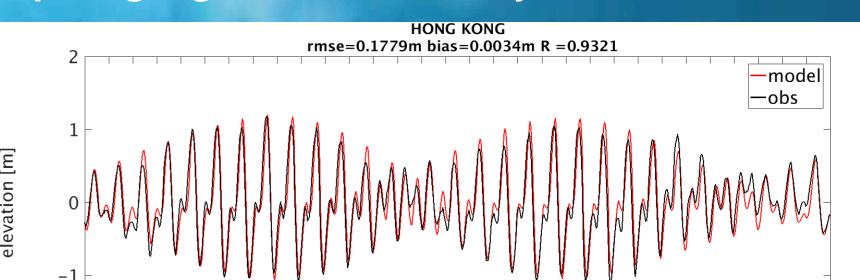
METHOD Assess mangrove area through time & reasons for loss				<u>م</u> 1	OLOGY Apply ecosystem to locations with: 1. high risk of flooding; 2. important to the entire PRD system		
WT1 Large-scale monitoring & modelling	WT1.1 Mangrove area monitoring Remote	ngrove SLR and area storminess nitoring scenarios		WT1.3 Evaluate defense effect of mangroves in PRD under climate change FVCOM model		WT1.4 optimizing ecosystem distribution	
WT3 Local-scale modelling Mechanical properties, Wave force	WT3.1 Repeated storms on mangroves oyster reef Delft3D-SW/ modeling	& S N	nodel SLR WT3 WoO dredg sedime oyster r DET ESTMC model	Cur 2 by ing nt & reefs - DRF ing	er level, Waves, rents, Salinity, SSC WT3.3 Long-term stability of ecosystem, dynamic VEG and Morphology DET-ESTMORF modeling	mangrove wetland or oyster reefs WT3.4 Synthetic case study Integrated modeling Cliff erosion,	
WT2 Experimental study Salinity experime	WT2.1 Repeated storms of mangrove	n	WT2. Create V by oyst reefs	VoO ter	WT2.3 Create WoO by dredging sediment SSC measured by 1, 2. Bottle 3, sediment		

The ANCODE

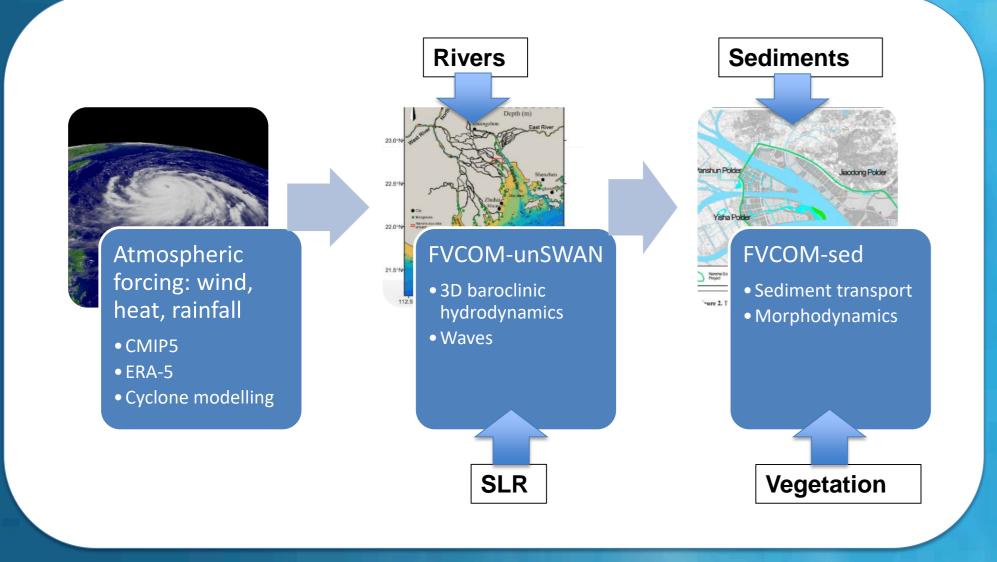
project:


aims to develop:

- new process-based understanding
- predictive models of ecosystem size requirements


by using field experiments, remote sensing and numerical modelling in the PRD and the coastline of the South China Sea.

- WT1: Delta-scale mangrove area monitoring by remote sensing and modelling of the delta and adjacent South China Sea
- WT2: Experiments using novel methods to study mangrove resilience in PRD and Hailing Island, as well as testing WoO creation using dredged sediment and oyster reefs


FVCOM Modelling


The FVCOM model uses an unstructured triangular grid which allows good coastal resolution while not requiring high resolution everywhere⁴.

External influences on delta

- WT3: Local-scale modelling using high-resolution dynamic and equilibrium models to examine the vegetation patch and tidal flat scale
- We will interact with stakeholders to address resilient urban planning and management, to provide opportunities for nature as part of the urban development process.

Tidal validation

Acknowledgements:

This work has been funded by the EPSRC in UK, the NWO in Netherlands and NSFC in China

EPSRC Engineering and Physical Sciences Research Council

*Contact for more information: jaw@noc.ac.uk

References

- 1. Hallegatte, S. et al. (2013) Future flood losses in major coastal cities. *Nature Climate Change*, **3**, 802–806.
- 2. Temmerman, S. et al. (2013) Ecosystem-based coastal defence in the face of global change. *Nature* **504**, 79–83.
- 3. Hu, Z. et al. (2015) Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. J. Geophys. Res. G Biogeosciences, 120, 1450–1469.
- 4. Chen, C. et al. (2003) An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159-186.