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A GLOBALLY IMPORTANT
INFRASTRUCTURE NETWORK

Global economy relies on
uninterrupted usage of a network
of telecommunication cables on the
seafloor.

These cables carry ~99% of all
digital data and voice
communications traffic
worldwide.

Over 9 million SWIFT banks
transfers alone were made using
these cables in 2004, ($7.4

trillion/day between 208 countries),

growing to 15 million SWIFT
transactions in 2014.

Here, we present initial results from
the first statistical analysis of a
global database of cable breaks
and causes.
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Global Cable Breaks Database Which natural processes cause

Manmade activities (fishing, trawling, anchors seafloor cable breaks?
etc.) can break cables, but natural hazards can
break multiple cables in one go which makes

repair and rerouting of data challenging and costly
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Red dots are cables broken by 1929 Grand Ba
Event (related to Mw 7.2 earthquake)

Black lines are the modern network — even more
dense than in 1929 and now fibreoptic (supplying
internet, finance, military traffic etc.)

A repeat event would significant for global
communications...
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A sediment flow triggered by a Mw 7.2 earthquake in 1929, travelled up to 19m/s and
broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean
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very large... Storegga Landslide (8.2 ka), >3000
km3 of sediment, triggered a widespread tsunami
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Can run-out long distances... Flows ¢
travelled >1500 km, up to 2@
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But direct field measurements are very rare, most of
0N what we know is based on deposits and scaled-down
experiments
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Talling et al. (2007, Nature)
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Pingtung earthquake (2006) and Typhoon

Morakot (2009) triggered a sediment flow (up
to 20 m/s) that broke up to 22 cables offshore

Taiwan over a distance of 450 km
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Which earthquakes
trigger damaging
submarine mass

movements?

113 individual earthquake-
related break events

13 earthquake swarm-
related break events

71 break events in Taiwan
alone!

Note: A break event may
relate to multiple individual
cable ruptures during one
earthquake
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Contents lists available at ScienceDirect

Marine Geology

journal homepage: www.elsevier.com/locate/margo

Which earthquakes trigger damaging submarine mass movements:
Insights from a global record of submarine cable breaks?

Ed L. Pope **, Peter J. Talling ?, Lionel Carter”

* Natio nal Oceanograp hy Centre, Southampton, European Way, Southampton SO14 37H, UK
® Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand

¥r  Cable breaks associated with
seismic events

. Seismic events associated with
cable breaks

Mw

e 45-50 Earthquakes of = Mw 4.5 during
50-55 the period when cables had
55-6.0 been installed nearby

6.0-65
65-70
7.0-75
75-8.0
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. Did not trigger a mass flow

Analysis of global breaks database reveals: 0

- Did trigger a mass flow

1) No obvious earthquake magnitude which will
trigger a submarine mass movement

Number of Earthquakes

2) Relationship between earthquake magnitude,

peak ground acceleration and triggering of mass 100

flow events varies on a regional basis 50
e.g. In some areas <Mw 3.0-5.0 quakes can trigger mass B 5-6 6.7 7-8 3.0 ™
flows, while in others mass flows can only be triggered by Earihquakes Magnituds (M=)

large events (>Mw 7.0)
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3) Not all >Mw 7.0 earthquakes
trigger cable-breaking flows (see

w
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z % SR v g i above), thus not all major

@ Taiwan

E s — Indonesia, Malaysia, earthquakes may produce powerful

3 Philippines flows that cover large areas

2 |_|Mediterranean - Only 15 of 56 earthquakes above MW

§ 15 [Jcaribbean 7.0 produced mass flows that broke

é 10 [[JPacific North West cables

35 | | Sediment supply (left) is as
important as earthquake magnitude
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as it effectively preconditions the

Earthquake Magnitude (Mw) -
system to failure

Conditions under which cable breaks were
recorded
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Earthquake triggered cables breaks — not a straightforward issue!
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Pope et al. (2016)
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How damaging are

tropical cyclones for
subsea cables?

G~

Munich RE

Areas which experience tropical cyclones are shown by green shading. The transition from
light to dark green reflects low to high frequency of tropical cyclones. The direction of travel

of these systems is shown by the green arrows. (Munich RE, 2011).
Cable breaks shown as filled circles
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Three types of cyclone-related cable breaks:

1. Direct & Synchronous: Cable breaks during the
passage of the tropical cyclone (Yellow circles)

2. Indirect & Near-Synchronous: Cable breaks
coincident with nearby river peak discharge (Red

i . targets)

. i 3. Indirect & Delayed: Cable breaks when peak

" : ‘ discharge levels had returned to pre-tropical

cyclone levels (Black stars)
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Will the frequency of cable breaks increase in future?

2250

Based on available data and forecast models, it is
highly likely in some areas, such as Taiwan...

2150~
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Distance Northward from Equator

e Qver the past 3 decades, tropical cyclone activity
has migrated poleward in the Northern and

1a50. = ROTHURSAT Southern Hemispheres at rates of 53 and

I 62km/decade respectively (left; Kossin et al., 2014).

e Cyclone intensity is increasing (Emanuel, 2005;
Peduzzi et al., 2012).

* |n Taiwan, only a modest increase typhoon numbers
but a marked rise in typhoon-related rainfall
between 1970-2010 (Tu and Chou, 2013).
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e Thus, not only typhoon intensification but also

2150 (6)S. Hemisphere R slower passage across Taiwan. More extreme
B S e o e e rainfall translates to increased debris flows thus
ot A » enhancing sediment availability for erosion (Chen

et al. 2012).

e Gaoping River between 1970 and 2012 shows
strong increase in mean daily sediment discharge
especially since 1990 (Lee et al., 2015)
accompanied by a significant rise in extreme
sediment yields, which is consistent with typhoon
intensification.
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Why are some cables broken,

It is apparent that fast (5-8
m/s) flows sometimes fail to
break intervening cables.

There are several possible
reasons for this :

1. anintact cableis
protected by deposited
sediment

2. its orientation across the
canyon/channel presents
a low drag profile to the
flow, e.g. Zakeri (2012),

3. the flow path either
through the thalweg or
over the levee

4. the presence of
sufficient cable slack to
accommodate any
down-slope movement

- -

Water Depth (km)

Marine
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Breaks

but neighbouring cables remain intact?

Gavey et al. (Marine Geology, In Press)
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So, what threat do turbidity currents and submarine landslides pose to
submarine telecommunications cable infrastructure?

It depends....

Landslide and Turbidity
Current Hazard

Tropical Cyclone
Hazard

Impﬁfaﬂons?

Pressure build up
Uplift
Drag
Fatigue
~uplure

Key factors include:

1. The number of cables which have been laid in a specific area (cable
density)

Sea-floor topography

Seismicity of the area

Sediment supply

The frequency and duration of large tropical cyclones

e W

Marine Landslide & Tropical
Cable Turbidity Cyclone
Breaks Currents Hazard




How can we better understand the risks posed to submarine cables?

. Through direct monitoring and measurements....
Repeat Mapping
Hughes Clarke et al. (2012)

o e g L
4964 138.7 27 Jnee
) Poonet v

ROT (degres)
 ROT fram BED0A

o Srom patoma

Benthic Event Detectors
ourtesy of MBARI

o]
o

o

Transducers (\t‘._
N

Height asb [m]
N A o
o o

o

Days

Marine Landslide & Tropical Conclusions
Cable Turbidity

Breaks Currents

Cyclone &
Hazard Monitoring




